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cross—relations between the filtered outputs:

This paper deals with the blind identification of the vari-
ances of the additive noises in a two-channel SIMO system.
They are estimated by using a frequency domain errors-in- Q)
variables scheme, when finite impulse responses (FIRXfilter

are driven by a white input sequence. It should be notedror this purpose, they search the null space of a suit-
that the proposed approach has the advantage of addressirgple positive hermitian block Toeplitz matrix, built
the unbalanced case, i.e. when the noise variances are n@tith the cross—correlation coefficients of the noisy fil-
the same. Moreover, the algorithm enables the solution téer outputs. ~ As an alternative, the subspace based
be directly obtained from the noisy data and no optimizatiormethod presented in [2] consists in retrieving the

iy (K) i (k) = hj (k) * (i (k) % S(K))
= (hi(K) = hj (K)) * (k) = hy (K) ; (K).

algorithm is required.

1. INTRODUCTION

additive noises.

tion of the received signal [7].

In the following, let us consider the SIMO system de-

picted in figure 1, wheres(k) denotes the input signal of

M = 2filters, defined by their finite impulse responses (FIRs)

hi(k), (i = 1,2), with maximal orderL. The filter outputs
xi(K) are then disturbed by additive zero-mean nolsék),
with varianced?, (i = 1,2). This yields the noisy observa-
tionsyi(k), (i = 1,2). Moreover,s(k) is assumed to be a sta-
tionary zero-mean white process with unit—variance, witho
loss of generality.

by(k), (07)
Xl(k)

hy (k)

ya(k)

ba(k), (03)
Xz(k)

hz(k) y2(Kk)

Figure 1: two-channel SIMO system

SIMO system identification consists in estimating the

span of the autocorrelation matrix, Rof the vector
x(K) = {x{(k)---x&(k)ﬂ with x;(k) = (k) xi(k— )]
It should be noted that both methods are equivalent when

For the last years, a great deal of interest has been paia-to Sidealmg with two channels.

gle input multiple output (SIMO) system identification [1]— t
[5] in signal processing. Thus, in the framework of speechr
enhancement based on two microphones, blind identific
tion methods such as [6] have been proposed to retrieve tf?ﬁ
speech signal from reverberated observations disturbed %
In mobile communications, identification
approaches have also been of interest to carry out equaliz

Adaptive approaches have also been studied, either in
he time domain [3] or in the frequency domain [4] [5].
hey aim at minimizing the cross-relations error, i.e.

% [|h; (k) *yi (k) — hi(k) xyj(k)|?] and are based on the least

ean square (LMS) and Newton algorithms applied to the
isy data.

However, the above methods cannot be used when the ad-
fitive noises do not have the same variance, i.e. when deal-
ing with the “unbalanced” case. Few methods deal with this
issue. In [6] and [8], the approach is based on the Frisch
scheme [9], which is a class of errors—in—variables (EIf) so
utions. The EIV models [11], initially developed in the fisl
of statistics and identification, assume that the availdhta
are disturbed by additive error terms. Given a generic g®ce
described byK variables{ty}x1.. k, the formulation of an
EIV estimation problem consists in determining, on the only
basis of noisy observatiofg = tx + Ni}k=1.. k, the set of
K-tuple {Ax}k=1... k that satisfies:

Atr+Asto+ -+ Akt =0

or equivalently,

Rl M A A]T =0 )
whereRy is the covariance matrix dfty }k—1 ... k and the up-
perscript’ denotes the transpose.

When each noise termy is assumed to be zero-mean, inde-
pendent of every other noise term and every varighlene
has:

Ri=R,.—-R,

whereR, andR,, respectively denote the covariance matrix
of {Z}k=1... k and of {M}=1... k-

FIRs and may include the estimations of the variances of thadditive noise could be estimated independently of eactr.othespeech

additive noises Thus, Xu et al. [1] exploit the so—called

1it should be noted that, in some specific cases, the varianeadf
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processing, it could be updated during silent frames. Swespsethods
[10] could also be considered provided that the spectrurhehbise-free
signal is discrete. However, these cases are too restriatid we propose
here to study a more general solution.
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At that stage, the so-called Frisch scheme [9] consist$aking into account (4) and (5), the noise variances are solu

in searching for the diagonal matric&s, which enable
R, — Ry, to be positive semidefinite:

R,-R,>0 3

tions of the following equation system:

a; O
0 az

o) it Y(w) - ©)

)

When dealing with SIMO system identification, given the
cross relations (1) and by selectikg= 2L + 2, the set of
2L + 2 variables{ty }«—1,.. o 12 can be for instance defined as
follows: '

[t to 2] = Pa(k) - xp(k—L) —xa(K)--- —xa(k—L)]",
whereas thé2L + 2)-tuple (A1, - - - , Ay 42) satisfies:

e Ao i2)” = [a(0) - hy(L) hp(0) - hp(L)]T .

domain as follows:

In that casez corresponds to the noisy observations. Ac-

cording to [8], solving (3) yields an infinite s& of vari- Ker(X"'(w)) = Span[ Hl(w)}

ances_(alz,azz). In [6], we suggest carrying out once.again 2

the Frisch scheme by selectifg= 2| +2 with| > L to find In the next two subsections, we will study how to solve

the true variances which belong$on 5. Then, the impulse  the system (6)-(7), and will present algorithms for the aois
responses can be retrieved according to (2). However, the(griance estimation.

are two main drawbacks:

1. There may be spurious solutiond i§ not suitably cho-
sen (— L must not be too low).

2. We do not take benefit of the fact that the true variance
belong to every se§ with | > L. Indeed, for the sake of
simplicity and computation, only two Frisch schemes ar
carried Qut. _ X11(W) — yXo2(W) = p.

Therefore, in this paper, we propose to develop a frequencg )

domain EIV approach for SIMO identification. This method See appendix 1 for proof.

avoids the above drawbacks. The rest of the paper is orga- Then, a first approach we could consider to blindly es-

nized as follows: section 2.1 deals with the variance estimdimate the noise variances would consist in minimizing the

tion issue. The identifiability conditions and the proposedollowing cost function:

algorithms are introduced in section 2.3. Then, experialent

results are presented in section 3.

ap O
trace(Y(w) 10 a
wherea; anda» are the unknowns.

Estimating the noise variances is very useful as it makes
it possible to estimatX(w) and consequently to retrieve
the impulse responsds(k) (i = 1,2) since equation (2), or
equivalently equation (1), can be rewritten in the freqyenc

Hy(w)

)zo wel-mm) @)

2.2 First approach to blindly estimate the variances

In addition to the trivial solutiorio?, 0%), the system (6) and

%7) admits another solution if and only if one can find
(v,p) € RY xR* such as

e

(8)

1(01,02) = Xy, )| = (Xt W) ey s )} )

2. SIMO SYSTEM IDENTIFICATION IN THE
FREQUENCY DOMAIN

2.1 Focuson thevariance estimation issue

where< .|. > denotes the hermitian product defined as fol-
lows:

1 .
Given the assumptions on the input sige@l) made in the <A(W)|B(W)> - ET/,HA(W)B (w)dw. (10)

introduction above, the power spectrum density matrix ef th

vector The hermitian product (10) can be expressed by using
x(K)=[xa2(k) —x1(K)]" is defined by: the Fourier coefficients of ther2periodic functionsA(w)
Xua(w) Xus(w) and B(w), denotedak and b respectively. Indeed, since
— [Z21iW) - AW Aw) = 5 aeandBw) = b*e/"", one obtains
xw =t ] w =3 =3
[Ha(w)|? —Hz(W)HI(W)} 1 qm i o\ *
= . K ik Kk
i (Awfew) =5 [ (3 atek)( 3 k) aw
X(w) is positive. In addition, it is singular since one has 1
- K (k=) * [ ajnw.
det(X(w)) = 0. ZH/—nngz nga (b ") ]e dw
Both properties are therefore denoted as follows: _ z ak(bk)*.
X(w) > 0. 4) kez

Therefore, when dealing with hermitian products between
the elements of the power spectrum density matrices such
asX;j(w) for instance(i, j = 1,2), the hermitian product can

be hence defined from the intercorrelation sequencgglof

However, only the power spectrum densitfw) of the noisy
observation vector (k) = [y2(k) —y1(K)]" is available.
According to figure 1, it satisfies:

Yq1(W Yao(W andx; (k)
Y(w) = [Yigwg Y;zgwﬂ = X(w) +B(w) The gradient ofli(a1,ay) is given by
o2 0 dJ(ay, a OXay.ar (W .
ZX(w)j{OZ 02} (5) (d; 2) o 3;?( Xy ). (1=1.2)
©2007 EURASIP 521 EUSIPCO, Poznan 2007



When cancelling it, the following two equations have to be J1(a1, as) théorique
solved:

o1 = @p(a2) 11)
Y0153 (°+ (Yoo ) Yaa(W)) ) atz-+ (Yo2(w) |G(w))
- a3 — 23,0+ [ Y22(W) |2
a2 = @u(ai) 12)
Y307 — 0+ (Yaz(w) Yz(W)) ) otz + (Yo (W) |G(w))
B oF =201+ Vi (W)
The solution of (11) end (12) are given by searching the root

of a 3" degree real polynomial, depending on eitbgor as. Spurious solution
10 True solution
In theory, the variances of the additive noises can be ok 5 4 6 8
tained as follows: s 0 0 2

e when the trivial solutior(oZ, 0?) is the only solution to
the equation (6), it can be obtained by minimizing the
cost functiondy (a1, a2).

e When there are two solutions to the equation (6), thaFigure 2: theoritical criteriod; (a1, a2) when a spurious so-
can be also found by minimizing (a1, a), there exists  lution to (6) exists. Herey > 0.

y € R* andp € R* such as

X11(W) — yXoo(W) = p. (13)

See appendix 2. However, wher> 0, only the trivial

solution satisfies (7).

Nevertheless, in real cases and when (6) admits two st
lutions, the cost functiody (a1, a2) can then have very small
values in the neighborhood of theses solutions. As a cons
quence, retrieving them becomes a hard task, due to the ¢
rors introduced when computing(w) from a finite number
of available samples:

e on the one handB(w) is not diagonal.
¢ On the other hand, the unbiased estimates of the interca
relation sequences are considered.
To illustrate this point, let us consider the example given b
low where the two following FIRs satisfy:

Ji(a, as), a real case

hy = {2, 1,71,2}
o { g’ —65+5 :1/55217 65— 2\255217 3}’

Figure 3: criteriond; (a1, a2) in dB, in a real case while a
In figure 2 the theoritical cost functiody (a1, a2) plot-  spurious solution to (6) should have existéd= 10000.
ted in dB exhibits the trivial solution and the spurious one.
Nevertheless, it takes very small values in the neighbathoo
of both solutions. In figure 3, when a real simulation is com-2.3 Second approach to blindly estimate the noise vari-
pleted withN = 10000 observations samplesgfandy,, the  ances

f;t'g‘iﬁie:uf?ﬁé {?Sgté%%g%ﬁ a2) does not make it possible We propose a new criterion to estimate the noise variances
p . ¥ . when the equation (6) has a single solution. Itis based on the
More generally, we will see that this problem happens Wher}ollowing property. Let us assume that b&th(w) 20 and

|(Xa1(W) [ Xo2(w)) | = Hill(w) H H)?zz(w) H 5;%/(:-,) # 0, andXy1(W) # Xz2. According to appendix 2, we
whereX1(w) abdXz(w) are defined as follows: (a) Xa,a,(W) =0 has a single solution <
1,
Xu1(W) = Xa1(w) +x3; (14) (b) Xay.a,(W) =0  has a single solution <
Y. 0 ~ ~ ~ ~
Xa2(W) = Xa2(W) + X5o, (15) (©) |(Xaa(w) [Xoa(w))| < HXM(W)H HXZZ(W)H (16)

with X2, =< X2, (w)|1 > andx3, =< XZ,(w)|1 > denoting N
the mean values of;1(w) andXy1(w) respectively. This will ~ whereXq, «,(W) is defined as in (14)-(15).
be confirmed in the next subsection. Then, when there is a single solution to equation (6), it can
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be found by solving equation . Algorithm 2

. +=(U§,r7f
xﬂlﬂz (W) =0.

Therefore, we propose to minimize the following criterion:

ba(az)

~ 2
011, 02) = || Xay ;W) o

Estimated value

~ -~ - 2
- HG(w)—alvzz(w)—azvll(w)+ala2H 17) ot (koD

Estimated value
of (c3,0%)

whereG(w) =Y11(W)Ya2(W) — Ya1(W)Yz2(w) andG(w) is de- Ty P R
fined as in (14)-(15).
J(01,02) is a quadratic function. Equating to zero the gra-

dient ofJ (a1, o) leads to the following equations: Figure 4: noise variances estimation for example 1.
< —Yor(w) ] G(W) — ax¥11(W) — al\?zz(w)> -0 ) )
< ~Yaa(w) ] G(W) — arYor(W) — 0{2Y11(W)> -0 k Jﬁ,ﬂ ”HW“ A et k W ‘Tjﬂﬂl i, oM
One flna”y deduces: o 20 40 60 80 100 o 20 10 60 80 100
~ ~ ~ ~ |1 (27| (dB) |H3(e727)]| (dB)
—(Y22(w)[Y12(W) ) 02 + (Y22(W) |G(W) ) ® “
a, = — > (18) 10 10
[Ya2(w)| 0 0
—(Yoo(W)[Yr1(W) Y a1 + (Y11(W)|G(wW '1° 'm
az = < 22( )| 11( ),>V ! < 11( )| ( )> (19) % 01 02 03 04 os % 01 02 03 0.4 05
[[Y11//2
Hence, this linear system can be re-written as follows:
N N ~ _ Figure 5:Lt" order FIR and their spectral representations.
1 (Voo w¥12(W) (Vow)IGw))
~ ~ ||Y22(W)H2 al — ~HYZZ(Wlllz Algorithm 1 Algorithm 2
(Voolw) Yas(w)) 1 az 11(w)|CwW)) T\ PR =D
[[Y12(w)[[2 [Y11.(w)[|2 e
Estimated value
M 3 of (03, 07) 3 Estimated value
One retrieves the condition (163)(y imposing deM) >0. . | ™ a \\\<°f o)
It should be noted that the condition (7) is no longer nec-
essary when equation (6) is assumed to have a unique soli ° 0 \ N
tion. - Oliﬂﬂ
~Y
3. RESULTS - 0 0 B 10 - 0 N 10
We propose to illustrate the algorithm with two examples.
The first example deals withla=2"% order system, the ) ) ) o
FIRs corresponding to the following transfert functione ar Figure 6: noise variances estimation for example 2.
defined by:
Hi(z2 =14+z+z! and Hx(z=1-z+z 1 Table 1: variance estimation and standard deviation based o
) 100 noise realizations, for the SIMO system of example 1.
N = 150 samples are assumed to be available. Moreover, the o1 2 _ 0,290 2_ 0998
two curves in the plafai, a;) defined by the relations (11) example 01 =95 0 =9

and (12) for the first algorithm, and the two lines in the plane | CriterionJ; (a1, a2) | 0.383+0.054 | 0.930+0.100
(a1, a2) defined by the relations (18) and (19) for the second | CriterionJ,(a;,a2) | 0.498+0.121 | 1.042+0.173
algorithm, are represented in figure 4.

In the second example, the proposed algorithms are

then tested with higher-order systerhs<{ 100), whose time  Tapje 2: variance estimation and standard deviation based o

and frequential domain representations are given in figure § g nojse realizations, for the SIMO system of example 2.
Here, N = 1000 samples are available. The good perfor- ole 2 02— 0776 02— 2318
exam 7=0. 5=2.

mances are illustrated in figure 6.
Numerical results based on Monte Carlo simulations are| CriterionJ;(ai,a2) | 1.25240.357 | 1.836+0.338

givenin Table 1 and 2, respectively for the examples 1 and 2. CriterionJ,(a1,a2) | 1.506+0.447 | 2.188+0.427

In each case, the signal-to—noise rat®BI for each chan-

nel are respectively equal ®\R = 10dB and SNR = 5dB.

The estimations of the variances provided by the cost func-

tions J1(a1,a2) (9) andJ(a1,02) (17) are compared. In 4. CONCLUSION

every case, only few samples (i.e. a few hundred) are rdn this paper, the variance estimation issue in the unbathnc

quired to estimate the paio?, o). case is addressed. For this purpose, we propose a frequency
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domain errors-in-variables approach. More particulaslg,

since bothXy1(w) # 0 andXzo(w) # 0. As a consequence,

investigate a first criterion and its the limits and hence prothere isy € R* such as:
pose an alternative one. This criterion has the advantage of

being simpler than the previous one since it is quadratic.

5. APPENDIX 1

Let us assume thdt, az) # (02, 02) is a solution of (6).
Then,a; # 02 AND a3 # 02. By rewritting (6) as follows:

(Xll(W)+022 — al) (Xzz(W)-‘rGf — Gz) =X11(W)X22(W),
there is necessarily € R* such that:
Xll(W) + 0'22 — 01 = VXZZ(W) (20)

1
X22(W) + O'f — 0y = ;/Xll(W). (21)

Moreover, since the paifas,0z) also satisfies (7), one de-
duces:
X11(W) 4 Xa2(W) 4+ 02 — a1 + 072 — a1z
1
:yXZZ(W) + ;/Xll(W) >0

Necessarilyy > 0. By introducingp = a; — 02 and in the
relation (20), one obtains (8).

Now, one assumes th&{1(w) — yXo2(W) = p with
y > 0 andp € R*. Then, the paifay,az) = p + 02,07 — %
is a non-trivial solution of (6). Moreover, one can write:

trace(X(W) + [Op 8] ) = (Xua(w) — p) + (Xa2(w) + %)

According to relation (8) and since bogti> 0 and the func-
tions Xj1(w) andXz2(w) are positive, one has:

X11(W) — p = yXz2(W) > 0

1
Xoa(W) + % = Xaaw) >0

Finally, one obtains

trace<X(w) + {—Op g} > >0.

So,(p + 03,07 — 1) satisfies the relation (7).

6. APPENDIX 2
Proof: Let us first expand the equation (6) as follows:

Xalﬂz(w) =0
{(i)
(i)

>z071-0’2 (w)=0
whereXg, o,(W) can be developped as follows:

=4

(0f — a2)Xq; + (05 — a1)%3,
+(0? - az) (02 —a1) = 0.

(22)

Xay,a5(W) = (0F — 02) X11(W) + (05 — a1)Xa2(W).

Hence,(b) = (a). To prove the converse part, let us assume

a non-zero solution to (22))( Thenay # g2 AND a; # 02
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(23)
(24)

(05— 1) = —y(0f — a)
X11 = YXo2.

Substituing (23) and (24) in (22)i) yields the following re-
lation:

a1 = 05 — VX9 + X4 (25)
X0
ay =07 — % +x3, (26)

Finally, since Xi1(w) # Xoz, —yx3, + X3, # 0, the pair
(a1, 02) defined by the relations (25) and (26) satisfies

a1 # 02 anda, # 02, and is solution of (6), that contradicts
(@)

(b) < (c) since both(b) and(c) means thak;; andXo»
are not colinear.
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